Answer:

General Formulas and Concepts:
Calculus
Integration
Integration Rule [Reverse Power Rule]: 

Integration Rule [Fundamental Theorem of Calculus 1]: 

Integration Property [Multiplied Constant]: 

Integration Property [Addition/Subtraction]: 
![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/ytcjdhza3nvop8ti8icbfc977nz2k5ug6b.png)
Area of a Region Formula: 
![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/8yomppr4m10wil0api6m0lag5b7hnc5c9y.png)
Explanation:
Step 1: Define
Identify
![\displaystyle f(x) = 2x + 4 \\\left[ -1 ,\ 3]](https://img.qammunity.org/2021/formulas/mathematics/college/93mcexlhnbfm3ii9zflkztqk7nt7ftsj18.png)
Step 2: Integrate
- Substitute in variables [Area of a Region Formula]: 
  
- [Integral] Rewrite [Integration Property - Addition/Subtraction]: 
  
- [Integrals] Rewrite [Integration Property - Multiplied Constants]: 
  
- [Integrals] Integration Rule [Reverse Power Rule]: 
  
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: 
  
- Simplify: 
  
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration