asked 18.0k views
4 votes
Referring to Exercise 2.95, what is the probability that a person diagnosed as having cancer actually has the disease?

1 Answer

6 votes

Answer:

The answer is 0.406

Explanation:

Exercise 2.95: In a certain region of the country it is known from past experience that theprobability of selecting an adult over 40 years of age with cancer is 0.05. If the probability of a doctor correctly diagnosing a person with cancer as having the disease is 0.78 and theprobability of incorrectly diagnosing a person without cancer as having the disease is 0.06,what is the probability that an adult over 40 years of age is diagnosed as having cancer?

This time we want to calculate P(C | D). To do this, we use Bayes rule:


P(C | D) = (P(C n D))/(P(D)) \\= (P(C)P(D | C))/(P(C)P(D | C) + P(C`)P(D | C`)) \\= (0.05 * 0.78)/((0.05 * 0.78) + (0.95 * 0.06)) \\= (0.039)/(0.039 + 0.057) \\=(0.039)/(0.096) \\= 0.406

answered
User TuyenNTA
by
8.2k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.