asked 210k views
5 votes
Solve the following differential equations or initial value problems. In part (a), leave your answer in implicit form. For parts (b) and (C), write your answer in explicit form.

a. y'= t²+7/y⁴-4y³
b. y'= (cos²y) ln t
c. (t²+t)y' +y² = ty²+, y(1)= -1

asked
User Chinnery
by
8.2k points

1 Answer

5 votes

Answer:

(a) (y^5)/5 + y^4 = (t^3)/3 + 7t + C

(b) y = arctan(t(lnt - 1) + C)

(c) y = -1/ln|0.09(t + 1)²/t|

Explanation:

(a) dy/dt = (t^2 + 7)/(y^4 - 4y^3)

Separate the variables

(y^4 - 4y^3)dy = (t^2 + 7)dt

Integrate both sides

(y^5)/5 + y^4 = (t^3)/3 + 7t + C

(b) dy/dt = (cos²y)lnt

Separate the variables

dy/cos²y = lnt dt

Integrate both sides

tany = t(lnt - 1) + C

y = arctan(t(lnt - 1) + C)

(c) (t² + t) dy/dt + y² = ty², y(1) = -1

(t² + t) dy/dt = ty² - y²

(t² + t) dy/dt = y²(t - 1)

(t² + t)/(t - 1)dy/dt = y²

Separating the variables

(t - 1)dt/(t² + t) = dy/y²

tdt/(t² + t) - dt/(t² + t) = dy/y²

dt/(t + 1) - dt/(t(t + 1)) = dy/y²

dt/(t + 1) - dt/t + dt/(t + 1) = dy/y²

Integrate both sides

ln(t + 1) - lnt + ln(t + 1) + lnC = -1/y

2ln(t + 1) - lnt + lnC = -1/y

ln|C(t + 1)²/t| = -1/y

y = -1/ln|C(t + 1)²/t|

Apply y(1) = -1

-1 = ln|C(1 + 1)²/1|

-1 = ln(4C)

4C = e^(-1)

C = (1/4)e^(-1) ≈ 0.09

y = -1/ln|0.09(t + 1)²/t|

answered
User Filipe Miranda
by
8.6k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.