asked 207k views
0 votes
Rationalisie the denominator of: 5/√7-√2​

asked
User Pospi
by
9.1k points

2 Answers

4 votes

Answer:


\longmapsto √(7 ) + √(2) .

Explanation:


\sf{\:(5)/(√(7) - √(2))}

By rationalizing the denominator,


=\sf{(5)/(√(7) - √(2))* (√(7) + √(2))/(√(7) + √(7))}


=\sf{(5(√(7) + √(2)))/((√(7) - √(2))(√(7) + √(2)))}


=\sf{(5(√(7) + √(2)))/((√(7))^2 - (√(2))^2)}


=\sf{(5(√(7) + √(2)))/(7 - 2)}


=\sf{(5(√(7) + √(2)))/(5)}


=\sf{\frac{\\ot{5}(√(7) + √(2))}{\\ot{5}}}


\boxed{\underline{\rm{\therefore\:(5)/(√(7) - √(2)) = √(7) + √(2)}}}

answered
User Matt Dowle
by
7.7k points
4 votes


= √(7) + √(2)

in alternate forms


= 4.05996

hope it helps

Rationalisie the denominator of: 5/√7-√2​-example-1
answered
User Ron Tuffin
by
7.6k points

Related questions

asked Aug 7, 2022 227k views
Chrs asked Aug 7, 2022
by Chrs
8.3k points
1 answer
2 votes
227k views
asked Nov 20, 2022 35.1k views
Somasundaram NP asked Nov 20, 2022
by Somasundaram NP
8.3k points
1 answer
1 vote
35.1k views
asked May 10, 2022 7.7k views
Keith Schacht asked May 10, 2022
by Keith Schacht
8.2k points
1 answer
3 votes
7.7k views
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.