Answer:
hi there friend
Step-by-step explanation:
CI=(0.431,1.0376)CI=(0.431,1.0376)
Step-by-step explanation:
Given that:
The sample size , n = 7
The mean of the observation:
Mean = Sum of observation / Total number of observation
 = (0.56+ 0.72+ 0.10 + 0.99 + 1.32 + 0.52 + 0.93) / 7 = 0.7343
The standard deviation:
S.D. = \sqrt {\frac {\sum_{i=1}^{i=7}(x_i-\bar{x})^2}{n-1}}S.D.= 
n−1
∑ 
i=1
i=7
 (x 
i
 − 
x
ˉ
 ) 
2
 
 
 
Calculating SD as:
S.D. = \sqrt {\frac {(0.56-0.7343)^2+(0.72-0.7343)^2+.....+(0.52-0.7343)^2+(0.93-0.7343)^2}{7-1}}S.D.= 
7−1
(0.56−0.7343) 
2
 +(0.72−0.7343) 
2
 +.....+(0.52−0.7343) 
2
 +(0.93−0.7343) 
2
 
 
 
SD = 0.3928
Degree of freedom = n-1 = 6
The critical value for t at 2% level of significance and 6 degree of freedom is 2.043.
So,
90 \% \ confidence\ interval=Mean\pm Z\times \frac {SD}{\sqrt {n}}90% confidence interval=Mean±Z× 
n
 
SD
 
So, applying values , we get:
CI=0.7343\pm 2.043\times \frac {0.3928}{\sqrt {7}}CI=0.7343±2.043× 
7
 
0.3928
 
CI=(0.431,1.0376)CI=(0.431,1.0376)