asked 29.7k views
16 votes
Consider the line y=7/4x-4.

Find the equation of the line that is perpendicular to this line and passes through the point (8,2)
Find the equation of the line that is parallel to this line and passes through the point (8,2)

Consider the line y=7/4x-4. Find the equation of the line that is perpendicular to-example-1

1 Answer

10 votes

Answer:


\displaystyle \perp\:y = -(4)/(7)x + 6(4)/(7) \\ \parallel\:y = 1(3)/(4)x - 12

Step-by-step Step-by-step explanation:

Perpendicular equations have OPPOCITE MULTIPLICATIVE INVERCE RATE OF CHANGES [SLOPES], so 1¾ becomes −⁴⁄₇, and we move forward:


\displaystyle 2 = -(4)/(7)[8] + b \hookrightarrow 2 = -4(4)/(7) + b; 6(4)/(7) = b \\ \\ \boxed{y = -(4)/(7)x + 6(4)/(7)}

Parallel equations have SIMILAR RATE OF CHANGES [SLOPES], so 1¾ remains as is as we proceed:


\displaystyle 2 = 1(3)/(4)[8] + b \hookrightarrow 2 = 14 + b; -12 = b \\ \\ \boxed{y = 1(3)/(4)x - 12}

I am joyous to assist you at any time.

answered
User Rafaelfranca
by
8.0k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.