Answer:
Explanation:
Using the section formula, if a point (x,y) divides the line joining the points (x 
1 
 
 ,y 
1 
 
 ) and (x 
2 
 
 ,y 
2 
 
 ) in the ratio m:n, then 
 
(x,y)=( 
m+n 
mx 
2 
 
 +nx 
1 
 
 
 
 , 
m+n 
my 
2 
 
 +ny 
1 
 
 
 
 ) 
 
The vertices of the triangle are given to be (x 
1 
 
 ,y 
1 
 
 ),(x 
2 
 
 ,y 
2 
 
 ) and (x 
3 
 
 ,y 
3 
 
 ). Let these vertices be A,B and C respectively. 
Then the coordinates of the point P that divides AB in l:k will be 
( 
l+k 
lx 
2 
 
 +kx 
1 
 
 
 
 , 
l+k 
ly 
2 
 
 +ky 
1 
 
 
 
 ) 
The coordinates of point which divides PC in m:k+l will be 
⎩ 
⎪ 
⎪ 
⎪ 
⎨ 
⎪ 
⎪ 
⎪ 
⎧ 
 
 
m+k+l 
mx 
3 
 
 +(k+l) 
(l+k) 
lx 
2 
 
 +kx 
1 
 
 
 
 
 
 , 
m+k+l 
my 
3 
 
 +(k+l) 
(l+k) 
ly 
2 
 
 +ky 
1 
 
 
 
 
 
 
⎭ 
⎪ 
⎪ 
⎪ 
⎬ 
⎪ 
⎪ 
⎪ 
⎫ 
 
 
⇒( 
m+k+l 
kx 
1 
 
 +lx 
2 
 
 +mx 
3 
 
 
 
 , 
m+k+l 
ky 
1 
 
 +ly 
2 
 
 +my 
3 
 
 
 
 )