asked 23.6k views
0 votes
Consider the function z(x,y) describing the paraboloid \[z = (2x - y)^2 - 2y^2 - 3y.\]Archimedes and Brahmagupta are playing a game. Archimedes first chooses $x.$ Afterwards, Brahmagupta chooses $y.$ Archimedes wishes to minimize $z$ while Brahmagupta wishes to maximize $z.$ Assuming that Brahmagupta will play optimally, what value of $x$ should Archimedes choose?

1 Answer

2 votes

Answer: -3/8

Explanation:

Expanding z we get

z = 4x^2 - 4xy + y^2 - 2y^2 - 3y

= -y^2 - (4x + 3) y + 4x^2.

After Archimedes chooses x, Brahmagupta will choose

y=-(4x+3/2) in order to maximize z

Then

z=-((-4x+3)/2)^2 -(4x+3)(-4x+3)/2)^2)+4x^2

z=8x^2+6x+9/4

To minimize this expression, Archimedes should choose x=-3/8

answered
User Ben Duffin
by
8.3k points

Related questions

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.