asked 206k views
4 votes
Hi, hiw do we do this question?​

Hi, hiw do we do this question?​-example-1

1 Answer

5 votes


\displaystyle \int\sec x\:dx = \ln |\sec x + \tan x| + C

Explanation:


\displaystyle \int\sec x\:dx=\int\sec x\left((\sec x+ \tan x)/(\sec x + \tan x)\right)dx


\displaystyle = \int \left((\sec x\tan x + \sec^2x)/(\sec x + \tan x) \right)dx

Let
u = \sec x + \tan x


\:\:\:\:\:\:du = (\sec x\tan x + \sec^2x)dx

where


d(\sec x) = \sec x\tan x\:dx


d(\tan x) = \sec^2x\:dx


\displaystyle \Rightarrow \int \left((\sec x\tan x + \sec^2x)/(\sec x + \tan x)\right)\:dx = \int (du)/(u)


= \ln |u| + C = \ln |\sec x + \tan x| + C

answered
User Aren Li
by
8.1k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.