asked 184k views
5 votes
Find the area of the region between the curve x^3+2x^2-3x and the x-axis over the interval [-3,1]

asked
User Bobsilon
by
8.1k points

1 Answer

2 votes

Answer:


\displaystyle A = (32)/(3)

General Formulas and Concepts:

Calculus

Integrals

  • Definite Integrals
  • Area under the curve

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Area of a Region Formula:
\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Explanation:

Step 1: Define

Identify

Curve: x³ + 2x² - 3x

Interval: [-3, 1]

Step 2: Find Area

  1. Set up:
    \displaystyle A = \int\limits^1_(-3) {(x^3 + 2x^2 - 3x)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle A = \int\limits^1_(-3) {x^3} \, dx + \int\limits^1_(-3) {2x^2} \, dx - \int\limits^1_(-3) {3x} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle A = \int\limits^1_(-3) {x^3} \, dx + 2\int\limits^1_(-3) {x^2} \, dx - 3\int\limits^1_(-3) {x} \, dx
  4. [Integrals] Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle A = ((x^4)/(4)) \bigg| \limits^1_(-3) + 2((x^3)/(3)) \bigg| \limits^1_(-3) - 3((x^2)/(2)) \bigg| \limits^1_(-3)
  5. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle A = -20 + 2((28)/(3)) - 3(-4)
  6. Evaluate:
    \displaystyle A = (32)/(3)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

answered
User InnoSPG
by
7.9k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.