asked 460 views
4 votes
In a random sample of students at a university, stated that they were nonsmokers. Based on this sample, compute a confidence interval for the proportion of all students at the university who are nonsmokers. Then find the lower limit and upper limit of the confidence interval.

asked
User Yemi
by
8.5k points

1 Answer

2 votes

Answer:

(0.8165 ; 0.8819)

Lower boundary = 0.8165

Upper boundary = 0.8819

Explanation:

Given :

Sample proportion. Phat = x/ n = 276/ 325 = 0.8492

Confidence interval :

Phat ± margin of error

Margin of Error = Zα/2* [√Phat(1 - Phat) / n]

Phat ± Zα/2* [√Phat(1 - Phat) / n]

The 90% Z critical value is = 1.645

0.8492 ± 1.645*[√0.8492(1 - 0.8492) / 325)

0.8492 ± 1.645*[√0.8492(0.1508) / 325]

0.8492 ± 1.645*√0.0003940288

0.8492 ± 0.0326535

Lower boundary = 0.8492 - 0.0326535 = 0.8165

Upper boundary = 0.8492 + 0.0326535 = 0.8819

Confidence interval = (0.8165 ; 0.8819)

answered
User Ranendra
by
7.3k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.