Answer:

General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS 
- Brackets 
 - Parenthesis 
 - Exponents 
 - Multiplication 
 - Division 
 - Addition 
 - Subtraction 
 
Distributive Property
Algebra I
- Terms/Coefficients
 - Factoring
 
Calculus
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule: 
- f(x) = cxⁿ 
 - f’(x) = c·nxⁿ⁻¹ 
 
Derivative Rule [Product Rule]: 
![\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://img.qammunity.org/2022/formulas/mathematics/college/c6fshhoq1mws6w0d0la17c7k2dcytwd8kg.png)
Derivative Rule [Chain Rule]: 
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vue68srn3fe6bds4idxorm97z7tgwelamw.png)
Explanation:
Step 1: Define
Identify
y = (2x - 5)²(5 - x⁵)²
Step 2: Differentiate
- Derivative Rule [Product Rule]: 
^2 + (2x - 5)^2(d)/(dx)[(5 - x^5)^2]](https://img.qammunity.org/2022/formulas/mathematics/college/8mc3insf8j0mx22ndowiob0hg8mncpomt6.png)
 - Chain Rule [Basic Power Rule]: 
![\displaystyle y' = [2(2x - 5)^(2-1) \cdot (d)/(dx)[2x]](5 - x^5)^2 + (2x - 5)^2[2(5 - x^5)^(2-1) \cdot (d)/(dx)[-x^5]]](https://img.qammunity.org/2022/formulas/mathematics/college/ej2v5vhxw6f62cenkxo3xxtqbx3u2fcedz.png)
 - Simplify: 
![\displaystyle y' = [2(2x - 5) \cdot (d)/(dx)[2x]](5 - x^5)^2 + (2x - 5)^2[2(5 - x^5) \cdot (d)/(dx)[-x^5]]](https://img.qammunity.org/2022/formulas/mathematics/college/p7i91fhunnhnvqdl8o3jn8muq63yyir7nh.png)
 - Basic Power Rule: 
^2 + (2x - 5)^2[2(5 - x^5) \cdot -5x^(5 - 1)]](https://img.qammunity.org/2022/formulas/mathematics/college/hqpzrrp0udwlolqigpjxvehi8x590214ld.png)
 - Simplify: 
^2 + (2x - 5)^2[2(5 - x^5) \cdot -5x^4]](https://img.qammunity.org/2022/formulas/mathematics/college/bq6e9m6mtk13odtiva57zreboztf5sbudw.png)
 - Multiply: 

 - Factor: 
![\displaystyle y' = 2(2x - 5)(5 - x^5)[2(5 - x^5) - 5x^4(2x - 5)]](https://img.qammunity.org/2022/formulas/mathematics/college/3ffepf3w08barf70ultnqekcw496f0z6nl.png)
 - [Distributive Property] Distribute 2: 
![\displaystyle y' = 2(2x - 5)(5 - x^5)[10 - 2x^5 - 5x^4(2x - 5)]](https://img.qammunity.org/2022/formulas/mathematics/college/li27vm8npb0sl9h96wi3lpj55aonao2uy8.png)
 - [Distributive Property] Distribute 5x⁴: 
![\displaystyle y' = 2(2x - 5)(5 - x^5)[10 - 2x^5 - 10x^5 + 25x^4]](https://img.qammunity.org/2022/formulas/mathematics/college/6szfa5l36y8vewr76taaqz2w1wggs0rx5t.png)
 - [Addition] Combine like terms (x⁵): 

 - Rewrite: 

 
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e