Answer:

General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS 
- Brackets 
 - Parenthesis 
 - Exponents 
 - Multiplication 
 - Division 
 - Addition 
 - Subtraction 
 
Algebra I
- Terms/Coefficients
 - Anything to the 0th power is 1
 - Exponential Rule [Rewrite]: 
  - Exponential Rule [Root Rewrite]: 
  
Calculus
Derivatives
Derivative Notation
Basic Power Rule: 
- f(x) = cxⁿ 
 - f’(x) = c·nxⁿ⁻¹ 
 
Derivative Rule [Chain Rule]: 
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vue68srn3fe6bds4idxorm97z7tgwelamw.png)
Explanation:
Step 1: Define
Identify

Step 2: Differentiate
- Chain Rule: 
![\displaystyle y' = 2(x + √(x))^(2 - 1) \cdot (d)/(dx)[x + √(x)]](https://img.qammunity.org/2022/formulas/mathematics/high-school/d7v7uhszu4q2qledgyxczsmzs3fyaha2uv.png)
 - Rewrite [Exponential Rule - Root Rewrite]: 
![\displaystyle y' = 2(x + x^{(1)/(2)})^(2 - 1) \cdot (d)/(dx)[x + x^{(1)/(2)}]](https://img.qammunity.org/2022/formulas/mathematics/high-school/h2fndr8irx3bjqz8k57jj58q2oycurzan2.png)
 - Simplify: 
![\displaystyle y' = 2(x + x^{(1)/(2)}) \cdot (d)/(dx)[x + x^{(1)/(2)}]](https://img.qammunity.org/2022/formulas/mathematics/high-school/hh02yegvrwkhdqold8af1g8vsoj20n3o4d.png)
 - Basic Power Rule: 

 - Simplify: 

 - Rewrite [Exponential Rule - Rewrite]: 

 - Multiply: 
![\displaystyle y' = 2[(x + x^{(1)/(2)}) + \frac{x + x^{(1)/(2)}}{2x^{(1)/(2)}}]](https://img.qammunity.org/2022/formulas/mathematics/high-school/5bcxv7issokp0dkq5pzv9tc1dlsbwn8n56.png)
 - [Brackets] Add: 

 - Multiply: 

 - Rewrite [Exponential Rule - Root Rewrite]: 

 
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Derivatives
Book: College Calculus 10e