asked 77.1k views
0 votes
Find <ABC. Please help.​

Find <ABC. Please help.​-example-1
asked
User Kitcc
by
8.1k points

1 Answer

5 votes

Answer:


\angle\ ABC=70

Explanation:


We\ are\ given\ that,\\AB\ and\ AC\ are\ two\ equal\ chords\ on\ the\ circle\ ABC.\\ Let\ the\ center\ of\ the\ circle\ ABC\ be\ O.\\ Angle\ subtended\ at\ the\ Center\ of\ the\ circle\ by\ Chord\ AB\ is\ 110.\\Hence,\\Lets\ connect\ AC\ to\ form\ a\ triangle- \triangle ABC.\\Also,\\O\ forms\ the\ Centroid\ of\ \triangle ABC.


By\ joining\ sides\ AO\ and\ OB,\ we\ obtain\ \triangle ABO.\\Hence,\\\angle BOA=110\ \\Now,\\Considering\ point\ C\ on\ Circle\ ABC,\ lets\ consider\ \angle BCA.


We\ know\ that,\\'Angle\ subtended\ by\ a\ chord\ at\ the\ center\ is\ double\ the\ angle\\ subtended\ by\ the\ same\ chord\ at\ the\ respective\ arc\ of\ the\ circle'.\\Here,\\As\ BOA\ is\ an\ angle\ subtended\ by\ the\ chord\ AB\ at\ the\ center\ of\ circle\ ABC\\ while,\ BCA\ is\ an\ angle\ subtended\ by\ the\ same\ chord\ AB\ at\ the\ major\ arc\ of\\ the\ Circle\ ABC.


Here,\\\angle BOA=2 \angle BCA\\Hence,\\Substituting\ \angle BOA=110,\\110=2*\angle BCA\\Hence,\\\angle BCA=(110)/(2)=55


Now,\\We\ also\ know\ that,\\'Base\ angles\ opposite\ to\ equal\ sides\ are\ equal\ too'.\\Here,\\In\ \triangle ABC,\\As\ BA=BC,\\\angle BAC= \angle BCA\\\\\therefore \angle BAC= \angle BCA=55


The\ Angle\ Sum\ Property\ of\ a\ Triangle\ States\ that,\\'The\ Sum\ of\ all\ Interior\ Angles\ of\ a\ Triangle\ is\ 180.'\\Hence,\\As\ Polygon\ ABC\ is\ a\ triangle,\\\angle BCA +\angle BAC +\angle ABC=180\\Substituting\ \angle BCA=\angle BAC=55,\\55+55+ \angle ABC=180\\Hence,\\110+ \angle ABC=180\\Or,\\\angle ABC=180-110=70

Find <ABC. Please help.​-example-1
answered
User Kieran E
by
8.4k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.