asked 156k views
0 votes
Find the values of the sine, cosine, and tangent for ZA.

(TOP OF TRIANGLE IS (A))

Find the values of the sine, cosine, and tangent for ZA. (TOP OF TRIANGLE IS (A))-example-1

1 Answer

2 votes


\bigstar\:{\underline{\sf{In\:right\:angled\:triangle\:ABC\::}}}\\\\

  • AC = 7 m
  • BC = 4 m

⠀⠀⠀


\bf{\dag}\:{\underline{\frak{By\:using\:Pythagoras\: Theorem,}}}\\\\


\star\:{\underline{\boxed{\frak{\purple{(Hypotenus)^2 = (Perpendicular)^2 + (Base)^2}}}}}\\\\\\ :\implies\sf (AB)^2 = (AC)^2 + (BC)^2\\\\\\ :\implies\sf (AB)^2 = (AB)^2 = (7)^2 = (4)^2\\\\\\ :\implies\sf (AB)^2 = 49 + 16\\\\\\ :\implies\sf (AB)^2 = 65\\\\\\ :\implies{\underline{\boxed{\pmb{\frak{AB = √(65)}}}}}\:\bigstar\\\\

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

☆ Now Let's find value of sin A, cos A and tan A,

⠀⠀⠀

  • sin A = Perpendicular/Hypotenus =
    \sf (4)/(√(65)) * (√(65))/(√(65)) = \pink{(4 √(65))/(65)}

⠀⠀⠀

  • cos A = Base/Hypotenus =
    \sf (7)/(√(65)) * (√(65))/(√(65)) = \pink{(7 √(65))/(65)}

⠀⠀⠀

  • tan A = Perpendicular/Base =
    {\sf{\pink{(4)/(7)}}}

⠀⠀⠀


\therefore\:{\underline{\sf{Hence,\: {\pmb{Option\:A)}}\:{\sf{is\:correct}}.}}}

Find the values of the sine, cosine, and tangent for ZA. (TOP OF TRIANGLE IS (A))-example-1
answered
User Farahmand
by
7.6k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.