asked 181k views
3 votes
A blood sample has 50,000 bacteria present. a drug fights the bacteria such that every hour the number of bacteria remaining, r(n), decreases by half. If r(n) is an exponential function of the number, n, of hours since the drug was taken, find the bacteria present four hours after administering the drug.

asked
User MelloG
by
8.7k points

1 Answer

1 vote

Answer:

3125 bacteria

Explanation:

Let r(0) be the initial amount of bacteria. Every hour, r(n) decreases by half. So, after one our new value for r(n) = (1/2)r(0). After two hours, r(n') = (1/2)r(n) = (1/2)(1/2)r(0) = (1/2)²r(0).

After n hours, r(n) = (1/2)ⁿr(0)

So when n = 4 hours and r(0) = 50,000, then

r(4) = (1/2)⁴r(0)

r(4) = (1/2)⁴ × 50,000

r(4) = (1/16) × 50,000

r(4) = 3125

So, after 4 hours, we have 3125 bacteria present.

answered
User AEMLoviji
by
8.0k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.