asked 53.4k views
2 votes
Find csc, cot0, and sin 0, where is the angle shown in the figure.Give exact values, not decimál approximations.

Find csc, cot0, and sin 0, where is the angle shown in the figure.Give exact values-example-1
asked
User Nakib
by
7.8k points

1 Answer

4 votes

Step-by-step explanation:

Given that:


\begin{gathered} \theta=? \\ Hypotenuse=6 \\ Adjacent=5 \end{gathered}

We will obtain the following trigonometric identities as shown below:


\begin{gathered} csc\theta=(1)/(\sin\theta) \\ \text{Using Pythagoras Theorem, we will obtain the missing side:} \\ a^2=c^2-b^2 \\ a^2=6^2-5^2 \\ a^2=36-25 \\ a^2=11 \\ a=√(11) \\ a=opposite=√(11) \\ \\ \sin\theta=(opposite)/(hypotenuse)=(√(11))/(6) \\ csc\theta=(1)/((√(11))/(6))=(6)/(√(11)) \\ csc\theta=(6)/(√(11)) \end{gathered}

Then,


\begin{gathered} cot\theta=(1)/(\tan\theta) \\ \tan\theta=(opposite)/(adjacent)=(√(11))/(5) \\ cot\theta=(1)/((√(11))/(5)) \\ cot\theta=(5)/(√(11)) \end{gathered}

Then,


\sin\theta=(√(11))/(6)

answered
User Aquiles
by
9.0k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.