asked 146k views
2 votes
Find the zeros by using the quadratic formula and tell whether the solutions are real or imaginary. F(x)=3x^2+4x+2

asked
User Heb
by
7.7k points

1 Answer

5 votes

The quadratic formula states that the solutions x1 and x2 of a quadratic function in the form y = ax^2 + bx + c is equal to:


\begin{gathered} x_1=\frac{-b+\sqrt[]{b^2-4ac}}{2a} \\ x_2=\frac{-b-\sqrt[]{b^2-4ac}}{2a} \end{gathered}

So, using this formula with the values a = 3, b = 4 and c = 2, we have that:


\begin{gathered} x_1=\frac{-4+\sqrt[]{4^2-4\cdot3\cdot2}}{2\cdot3}=\frac{-4+\sqrt[]{16-24}}{6}=\frac{-4+\sqrt[]{-8}}{6} \\ x_1=\frac{-4+\sqrt[]{2^2\cdot(-2)}}{6}=\frac{-4+2\cdot\sqrt[]{-2}}{6}=\frac{-2+\sqrt[]{-2}}{3}=-(2)/(3)+i\cdot\frac{\sqrt[]{2}}{3} \\ x_2=\frac{-4-\sqrt[]{-8}}{6}=\frac{-2-\sqrt[]{-2}}{3}=-(2)/(3)-i\cdot\frac{\sqrt[]{2}}{3} \end{gathered}

Since the zeros have a complex part, the solutions are imaginary.

answered
User Gillie
by
8.3k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.