asked 122k views
1 vote
For this question it is asking for the mean, standard deviation, Q1, Q3, lower fence, and upper fence

For this question it is asking for the mean, standard deviation, Q1, Q3, lower fence-example-1
asked
User Hbd
by
8.1k points

1 Answer

3 votes

Step 1

Given;


10,\:15,\:19,\:52,\:34,\:44,\:47,\:20,\:60,\:25

Step 2

Find the mean


\begin{gathered} The\:arithemtic\:mean\:\left(average\right)\:is\:the\:sum\:of\:the\:values\:in\:the\:set\: \\ \begin{equation*} divided\:by\:the\:number\:of\:elements\:in\:that\:set. \end{equation*} \\ \mathrm{If\:our\:data\:set\:contains\:the\:values\:}a_1,\:\ldots \:,\:a_n\mathrm{\:\left(n\:elements\right)\:then\:the\:average}= \\ (\sum x)/(n)=(326)/(10)=32.6 \end{gathered}

Step 3

Find the standard deviation


S\mathrm{tandard\:deviation,\:}\sigma\left(X\right)\mathrm{,\:is\:the\:square\:root\:of\:the\:variance:}\sigma\left(X\right)=\sqrt{(\sum(x_i-\mu)^2)/(N)}
Standard\text{ deviation=}17.28326

Step 4

Find Q1


\begin{gathered} The\:first\:quartile\:is\:computed\:by\:taking\:the\:median\:of\:the\:lower\:half\:of\:a\:sorted\:set \\ Arrange\text{ in ascending order} \\ 10,\:15,\:19,\:20,\:25,\:34,\:44,\:47,\:52,\:60 \\ Take\text{ the lower half of the ascending set} \\ 10,15,19,20,25 \\ Q_1=19 \end{gathered}

Step 5

Find Q3


\begin{gathered} \mathrm{The\:third\:quartile\:is\:computed\:by\:taking\:the\:median\:of\:the\:higher\:half\:of\:a\:sorted\:set.} \\ Arrange\text{ the terms in ascending order} \\ 10,\:15,\:19,\:20,\:25,\:34,\:44,\:47,\:52,\:60 \\ Take\text{ the upper half of the ascending term} \\ 34,44,47,52,60 \\ Q_3=47 \end{gathered}

Step 6

Find the lower fence


\begin{gathered} =Q_1-1.5(IQR) \\ IQR=Q_3-Q_1=47-19=28 \\ =19-1.5(28)=-23 \end{gathered}

Step 7

Find the upper fence


\begin{gathered} =Q_3+1.5(IQR) \\ =47+1.5(28)=89 \end{gathered}

answered
User Szymon Pobiega
by
8.3k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.