asked 121k views
2 votes
Can you please help me with this math problem. Thank you a)b) How many seconds for the ball to hit the moons surface ?

Can you please help me with this math problem. Thank you a)b) How many seconds for-example-1
asked
User Tejendra
by
8.5k points

1 Answer

2 votes

Height of the ball:


s=-2.7t^2+30t+6.5

a) Find t for a height (s) of 20ft:


\begin{gathered} s=20 \\ -2.7t^2+30t+6.5=20 \end{gathered}

Solve t:

1. Subtract 20 in both sides of the equation:


\begin{gathered} -2.7t^2+30t+6.5-20=20-20 \\ \\ -2.7t^2+30t-13.5=0 \end{gathered}

2. Use quadratic formula to solve t:


\begin{gathered} ax^2+bx+c=0 \\ \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \end{gathered}
\begin{gathered} t=\frac{-30\pm\sqrt[]{30^2-4(-2.7)(-13.5)}}{2(-2.7)} \\ \\ t=\frac{-30\pm\sqrt[]{900-145.8}}{-5.4} \\ \\ t=\frac{-30\pm\sqrt[]{754.2}}{-5.4} \\ \\ t_1=\frac{-30+\sqrt[]{754.2}}{-5.4}=0.47 \\ \\ t_2=\frac{-30-\sqrt[]{754.2}}{-5.4}=10.64 \end{gathered}

Then, the height of the ball is 20ft above the moon's surface after 0.47seconds and 10.64seconds

b) The ball will hit the moon's surface when its height is 0ft.

Use the given function for the height of the ball and solve t when s=0:


\begin{gathered} s=0 \\ -2.7t^2+30t+6.5=0 \\ \end{gathered}

Find t using quadratic formula:


\begin{gathered} t=\frac{-30\pm\sqrt[]{30^2-4(-2.7)(6.5)}}{2(-2.7)} \\ \\ t=\frac{-30\pm\sqrt[]{900-70.2}}{-5.4} \\ \\ t=\frac{-30\pm\sqrt[]{829.8}}{-5.4} \\ \\ t_1=\frac{-30+\sqrt[]{829.8}}{-5.4}=0.22 \\ \\ t_2=\frac{-30-\sqrt[]{829.8}}{-5.4}=10.89 \end{gathered}

Then, the ball hit the moon's surface at 0.22 seconds and 10.89 seconds

answered
User Gomu
by
8.1k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.