asked 146k views
5 votes
Identify the two tables which represent quadratic relationships.х01233у3456X012.3c-4-8- 10у-10Х012344у440х12.3-2.4-8у-160Х12.321400у012.3 40-22.у

Identify the two tables which represent quadratic relationships.х01233у3456X012.3c-example-1
asked
User Stdunbar
by
8.3k points

1 Answer

5 votes

Let the quadratic equation in the general form be,


\begin{gathered} y=ax^2+bx+c \\ a\\e0 \end{gathered}

Checking option (1),

Finding the values of a,b,c by substituting the three coordinates and checking if the fourth one satisfies it or not,


\begin{gathered} 3=a(0)^2+b(0)+c \\ c=3 \\ 4=a(1)^2+b(1)+3 \\ 1=a+b\ldots\text{.}\mathrm{}(1) \\ 5=a(2)^2+2b+3 \\ 2=4a+2b \\ 1=2a+b\ldots\ldots\text{.}(2) \end{gathered}

Using equaiton (1) and (2),

a=0 and b=1.

As a cannot have value 0 hence the given option is not a quadratic equation.

Checking option (2),

Finding the values of a,b,c by substituting the three coordinates and checking if the fourth one satisfies it or not,


\begin{gathered} -4=a(0)^2+b(0)+c \\ c=-4 \\ -8=a(1)^2+b(1)-4 \\ a+b=-4\ldots\ldots\text{.}(3) \\ -10=4a+2b-4 \\ 2a+b=-3\ldots\ldots\text{.}(4) \end{gathered}

Solving equation (3) and (4),


\begin{gathered} 2a+2b-2a-b=-8+3 \\ b=-5 \\ a=1 \end{gathered}

Checking the fourth coordinate,


\begin{gathered} y=x^2-5x-4 \\ y=3^2-5(3)-4 \\ y=9-15-4 \\ y=-10 \end{gathered}

Thus, (3,-10) satifies the given quadratic.

Thus, option (2) represents a quadratic equation.

Checking option (3),

Finding the values of a,b,c by substituting the three coordinates and checking if the fourth one satisfies it or not,


\begin{gathered} 4=a(0)^2+b(0)+c \\ c=4 \\ -4=a(1)^2+b(1)+4 \\ a+b=-8\ldots\text{.}(5) \\ -4=4a+2b+4 \\ 2a+b=-4\ldots\ldots\text{.}(6) \end{gathered}

Solving equation (5) and (6),


\begin{gathered} 2a+b-a-b=-4+8 \\ a=4 \\ b=-12 \end{gathered}

Checking the fourth coordinate,


\begin{gathered} y=4x^2-12x+4 \\ y=4(3)^2-12(3)+4 \\ y=36-34+4 \\ y=4 \end{gathered}

Thus, (3,4) satisfies the quadratic.

Thus, option (3) represents the quadratic.

Thus, option (2) and (3) are the two of the options which represents the quadratic.

answered
User JvO
by
8.2k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.