asked 54.8k views
1 vote
Multiply the rational expressions and express the product in simplest form. When typing your answer for the numerator and denominator be sure to type the term with the variable first.\frac{\left(2x^2+9x-35\right)}{\left(x^2+10x+21\right)}\cdot \frac{\left(3x^2+2x-21\right)}{\left(3x^2+14x-49\right)}The numerator is AnswerThe denominator is Answer

Multiply the rational expressions and express the product in simplest form. When typing-example-1

1 Answer

2 votes

Given:

The expression is,


((2x^2+9x-35))/((x^2+10x+21))*((3x^2+2x-21))/((3x^2+14x-49))

Simplify the expression,


\begin{gathered} ((2x^2+9x-35))/((x^2+10x+21))*((3x^2+2x-21))/((3x^2+14x-49)) \\ =(2x^2-5x+14x-35)/(x^2+3x+7x+21)*(3x^2-7x+9x-21)/(3x^2-7x+21x-49) \\ =\frac{x(2x^{}-5)+7(2x-5)}{x(x^{}+3)+7(x+3)}*\frac{x(3x^{}-7)+3(3x-7)}{x(3x^{}-7)+7(3x-7)} \\ =((2x-5)(x+7))/((x+3)(x+7))*((3x-7)(x+3))/((3x-7)(x+7)) \\ \text{Cancel the common factor } \\ =(2x-5)/(x+3)*(x+3)/(x+7) \\ =(2x-5)/(x+7) \end{gathered}

Answer:

Numerator is 2x - 5.

Denominator is x + 7.

answered
User Ivo Velitchkov
by
7.6k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.