asked 50.3k views
4 votes
Here is the directions my teacher told me “ do not use your calculator to multiple by or find inverses of 2x2 matrices. You must know the formula for inverting those and be able to apply it.”

Here is the directions my teacher told me “ do not use your calculator to multiple-example-1
asked
User Anthales
by
8.3k points

1 Answer

0 votes

Statement Problem: Find;


\begin{bmatrix}{a_1} & {a_2} & {a_3} \\ {b_1} & {b_2} & {b_3} \\ {} & {} & \end{bmatrix}

If;


3(\begin{bmatrix}{-4} & {0} & {1} \\ {0} & {2} & {3} \\ {} & {} & \end{bmatrix}-\begin{bmatrix}{2} & {2} & {-2} \\ {3} & {-6} & {0} \\ {} & {} & \end{bmatrix})=\begin{bmatrix}{a_1} & {a_2} & {a_3} \\ {b_1} & {b_2} & {b_3} \\ {} & {} & \end{bmatrix}

Solution:

First, we find the difference of the matrices in the bracket;


\begin{gathered} \begin{bmatrix}{-4} & {0} & {1} \\ {0} & {2} & {3} \\ {} & {} & \end{bmatrix}-\begin{bmatrix}{2} & {2} & {-2} \\ {3} & {-6} & {0} \\ {} & {} & \end{bmatrix}=\begin{bmatrix}{-4-2} & {0-2} & {1-(-2)} \\ {0-3} & {2-(-6)} & {3-0} \\ {} & {} & \end{bmatrix} \\ \begin{bmatrix}{-4} & {0} & {1} \\ {0} & {2} & {3} \\ {} & {} & \end{bmatrix}-\begin{bmatrix}{2} & {2} & {-2} \\ {3} & {-6} & {0} \\ {} & {} & \end{bmatrix}=\begin{bmatrix}{-6} & {-2} & {3} \\ {-3} & {8} & {3} \\ {} & {} & \end{bmatrix} \end{gathered}

Then, we multiply the result above by 3;


\begin{gathered} 3(\begin{bmatrix}{-4} & {0} & {1} \\ {0} & {2} & {3} \\ {} & {} & \end{bmatrix}-\begin{bmatrix}{2} & {2} & {-2} \\ {3} & {-6} & {0} \\ {} & {} & \end{bmatrix})=3(\begin{bmatrix}{-6} & {-2} & {3} \\ {-3} & {8} & {3} \\ {} & {} & \end{bmatrix}) \\ 3(\begin{bmatrix}{-6} & {-2} & {3} \\ {-3} & {8} & {3} \\ {} & {} & \end{bmatrix})=\begin{bmatrix}{3(-6)} & {3(-2)} & {3(3)} \\ {3(-3)} & {3(8)} & {3(3)} \\ {} & {} & \end{bmatrix} \\ 3(\begin{bmatrix}{-6} & {-2} & {3} \\ {-3} & {8} & {3} \\ {} & {} & \end{bmatrix})=\begin{bmatrix}{-18} & {-6} & {9} \\ {-9} & {24} & {9} \\ {} & {} & \end{bmatrix} \end{gathered}

Hence, the solution is;


\begin{gathered} a_1=-18,a_2=-6,a_3=9_{} \\ b_1=-9,b_2=24,b_3=9 \end{gathered}

answered
User David Radcliffe
by
7.7k points

Related questions

1 answer
1 vote
87.3k views
1 answer
4 votes
73.5k views
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.