asked 127k views
2 votes
Use the properties of determinants to find the value of the second determinant, given the value of the first.

Use the properties of determinants to find the value of the second determinant, given-example-1
asked
User Tapas
by
8.2k points

1 Answer

5 votes

det\begin{bmatrix}{s} & {t} & {u} \\ {v} & {w} & {x} \\ {4} & {2} & {8}\end{bmatrix}=8sw+4tx+2uv-4uw-8tv-2sx=3

According to the sum property, we have:


\begin{gathered} det\begin{bmatrix}{32-s} & {16-t} & {64-u} \\ {v} & {w} & {x} \\ {4} & {2} & {8}\end{bmatrix}=det\begin{bmatrix}{32} & {16} & {64} \\ {0} & {0} & {0} \\ {0} & {0} & {0}\end{bmatrix}+det\begin{bmatrix}{-s} & {-t} & {-u} \\ {v} & {w} & {x} \\ {4} & {2} & {8}\end{bmatrix} \\ det\begin{bmatrix}{32} & {16} & {64} \\ {0} & {0} & {0} \\ {0} & {0} & {0}\end{bmatrix}=0 \\ det\begin{bmatrix}{-s} & {-t} & {-u} \\ {v} & {w} & {x} \\ {4} & {2} & {8}\end{bmatrix}=-det\begin{bmatrix}{s} & {t} & {u} \\ {v} & {w} & {x} \\ {4} & {2} & {8}\end{bmatrix}=-3 \\ \therefore det\begin{bmatrix}32{-s} & {16-t} & {64-u} \\ {v} & {w} & {x} \\ {4} & {2} & {8}\end{bmatrix}=-3 \end{gathered}

answered
User Yhenon
by
8.3k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.