asked 41.9k views
0 votes
Use the Law of Cosines to solve the triangle. Round your answers to two decimal places.

Use the Law of Cosines to solve the triangle. Round your answers to two decimal places-example-1
asked
User Ulvi
by
7.9k points

1 Answer

7 votes

ANSWER:

A = 34.09°

B = 39.84°

C = 106.07°

Explanation:

The Law of Cosines in its general form has the following form:


a^2=b^2+c^2-2bc\cos A

We apply the law of cosines for each angle and then solve for each of them as follows:


\begin{gathered} a^(2)=b^(2)+c^(2)-2bc\cos(A) \\ \\ \cos(A)=(b^2+c^2-a^2)/(2bc) \\ \\ A=\cos^(-1)\:\left((b^2+c^2-a^2)/(2bc)\right) \\ \\ \text{ We replacing} \\ \\ A=\cos^(-1)\left((16^2+24^2-14^2)/(2\left(16\right)\left(24\right))\right)\: \\ \\ A=\cos^(-1)\left((53)/(64)\right)\:=34.09\degree \\ \\ \\ b^2=a^2+c^2-2ac\cos(B) \\ \\ \cos(B)=(a^2+c^2-b^2)/(2ac) \\ \\ B=\cos^(-1)\left((a^2+c^2-b^2)/(2ac)\right) \\ \\ \text{ We replacing} \\ \\ B=\cos^(-1)\left((14^2+24^2-16^2)/(2\left(14\right)\left(24\right))\right)\: \\ \\ B=\cos^(-1)\left((43)/(56)\right) \\ \\ B=39.84\degree \\ \\ \\ c^2=a^2+b^2-2ab\cos(C) \\ \\ \cos(C)=(a^2+b^2-c^2)/(2ab) \\ \\ C=\cos^(-1)\left((a^2+b^2-c^2)/(2ab)\right) \\ \\ \text{ We replacing:} \\ \\ C=\cos^(-1)\left((14^2+16^2-24^2)/(2\left(14\right)\left(16\right))\right)\: \\ \\ C=\cos^(-1)\left(-(31)/(112)\right) \\ \\ C=106.07\degree \end{gathered}

answered
User Despertar
by
7.3k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.