asked 234k views
5 votes
Divide the rational expressions and express in simplest form. When typing your answer for the numerator and denominator be sure to type the term with the variable first.The numerator is AnswerThe denominator is Answer

Divide the rational expressions and express in simplest form. When typing your answer-example-1
asked
User Elijan
by
8.4k points

1 Answer

2 votes

Step-by-step explanation


\begin{gathered} (\left(q^2-9\right))/(\left(q^2+6q+9\right))/(\left(q^2-2q-3\right))/(\left(q^2+2q-3\right)) \\ \end{gathered}

Step 1

factorize:

remember those cases:


\begin{gathered} (a^2-b^2)=(a+b)(a-b) \\ (a^2+2ab+b^2)=(a+b)^2 \\ \end{gathered}

so


\begin{gathered} (q^2-9) \\ (q^2-9)=(q^2-3^2)=(q+3)(q-3) \\ \text{and} \\ (q^2+6q+9)=(q^2+(2\cdot q\cdot3)+3^2)=(q+3)^2 \\ \text{also} \\ (q^2-2q-3)=(q+1)(q-3),\text{ because 1-3= -2 and, 1}\cdot-3=-3 \\ so \\ (q^2-2q-3)=(q+1)(q-3) \\ \text{ finally } \\ (q^2+2q-3)=(q-1)(q+3),because\text{ -1+3=}2,\text{ and -1}\cdot3=-3 \\ (q^2+2q-3)=(q-1)(q+3) \end{gathered}

Step 2

replace


\begin{gathered} ((q^2-9))/((q^2+6q+9))/((q^2-2q-3))/((q^2+2q-3)) \\ ((q+3)(q-3))/((q+3)^2)/((q+1)(q-3))/((q-1)(q+3)) \\ \text{ reduce} \\ \frac{(q-3)}{(q+3)^{}}/((q+1)(q-3))/((q-1)(q+3)) \\ \frac{\frac{(q-3)}{(q+3)^{}}}{((q+1)(q-3))/((q-1)(q+3))}=((q-3)(q-1)(q+3))/((q+3)(q+1)(q-3)) \\ ((q-3)(q-1)(q+3))/((q+3)(q+1)(q-3))=((q-1))/((q+1)) \\ ((q-1))/((q+1)) \end{gathered}

therefore the answer is

numerator : q-1

denominator: q+1

I hope this helps you

answered
User Oliver Angelil
by
8.3k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.