asked 187k views
1 vote
Which of the extrema below does the the function f(x) = x³ − 2x³ + 1 have? 1. absolute maximum II. absolute minimum III. local maximum IV. local minimum ACTS A. I and Ill only B. I, II, III, and IV OC. I and II only OD. III and IV only Portions of this soft

Which of the extrema below does the the function f(x) = x³ − 2x³ + 1 have? 1. absolute-example-1
asked
User Binder
by
7.4k points

1 Answer

5 votes

f\left(x\right)\:=\:x^5-2x^3+1
f^(\prime)(x)=5x^4-6x^2
\mathrm{Suppose\:that\:}x=c\mathrm{\:is\:a\:critical\:point\:of\:}f\left(x\right)\mathrm{\:then,\:}
\mathrm{If\:}f\:'\left(x\right)>0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:maximum.}
\mathrm{If\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)>\:0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:minimum.}
\mathrm{If\:}f\:'\left(x\right)\mathrm{\:is\:the\:same\:sign\:on\:both\:sides\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:neither\:a\:local\:maximum\:nor\:a\:local\:minimum.}
f^(\prime)(x)=5x^4-6x^2=0\text{ }\rightarrow x\text{ }^2(5x^2\text{ - 6})=0

then at x = 0 and x = (6/5)^(1/2) the function has critical points. Minding the sign of f', one obtains that there are only local maximum and local minimum, so the answer is D.

answered
User Dragos Durlut
by
7.5k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.