asked 21.8k views
1 vote
Find the inverse of the matrix below. You must do this by hand and show all work to earn full credit. Give exact answers. No graphing calculator!

Find the inverse of the matrix below. You must do this by hand and show all work to-example-1
asked
User Jwilner
by
7.7k points

1 Answer

1 vote

The given matrix is,


\:A=\:\begin{pmatrix}3&5\\ \:2&4\end{pmatrix}

Therefore,


\begin{gathered} \mathrm{Find\:2x2\:matrix\:inverse\:according\:to\:the\:formula}: \\ \begin{equation*} \quad\begin{pmatrix}a\: & \:b\: \\ c\: & \:d\:\end{pmatrix}^(-1)=\frac{1}{\det\begin{pmatrix}a\: & \:b\: \\ c\: & \:d\:\end{pmatrix}}\begin{pmatrix}d\: & \:-b\: \\ -c\: & \:a\:\end{pmatrix} \end{equation*} \\ =\frac{1}{\det \begin{pmatrix}3&5\\ 2&4\end{pmatrix}}\begin{pmatrix}4&-5\\ -2&3\end{pmatrix} \end{gathered}

Where,


\begin{gathered} \det\begin{pmatrix}3 & 5 \\ 2 & 4\end{pmatrix}=(3*4)-(2*5)=12-10=2 \\ \therefore\det\begin{pmatrix}3 & 5 \\ 2 & 4\end{pmatrix}=2 \end{gathered}

Hence,


=(1)/(2)\begin{pmatrix}4 & -5 \\ -2 & 3\end{pmatrix}=\begin{pmatrix}(1)/(2)*4 & (1)/(2)*-5 \\ \:(1)/(2)*-2 & (1)/(2)*4\end{pmatrix}=\begin{pmatrix}2 & -(5)/(2) \\ -1 & (3)/(2)\end{pmatrix}

Therefore, the answer is


A^(-1)=\begin{pmatrix}2 & -(5)/(2) \\ -1 & (3)/(2)\end{pmatrix}

answered
User Shane Powell
by
8.9k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.