asked 142k views
1 vote
consider polygon abcde on the coordinate grid what is the best approximation for the perimeter of polygon ABCDE

consider polygon abcde on the coordinate grid what is the best approximation for the-example-1
asked
User Swolfe
by
8.1k points

1 Answer

5 votes

24.28 units

Step-by-step explanation

Perimeter is the distance around the edge of a shape, to find the perimeter of the given figure we can use the distance bewteen 2 points formula,it says


\begin{gathered} d=√((x_2-x_1)^2+(y_2-y_1)^2) \\ where \\ P1(x_1,y_1) \\ P2(x_2,y_2) \end{gathered}

so

Step 1

identify the vertices ;


\begin{gathered} A(-2,3) \\ B(0,6) \\ C(5,4) \\ D(4,-1) \\ E(-1,-2) \end{gathered}

Step 2

now, find the length of each segment

a)AB

replace in the formula


\begin{gathered} d=√((x_2-x_1)^2+(y_2-y_1)^2) \\ d_(AB)=√((0-(-2))^2+(6-3)^2) \\ d_(AB)=√(4+9) \\ d_(AB)=√(13) \end{gathered}

b)BC


\begin{gathered} d=√((x_2-x_1)^2+(y_2-y_1)^2) \\ d_(BC)=√((5-0)^2+(4-6)^2) \\ d_(BC)=√(25+4) \\ d_(BC)=√(29) \end{gathered}

c)CD


\begin{gathered} d=√((x_2-x_1)^2+(y_2-y_1)^2) \\ d_(CD)=√((4-5)^2+(-1-4)^2) \\ d_(CD)=√(1+25) \\ d_(CD)=√(26) \end{gathered}

d)DE


\begin{gathered} d=√((x_2-x_1)^2+(y_2-y_1)^2) \\ d_(DE)=√((-1-4)^2+(-2-(-1))^2) \\ d_(DE)=√(25+1) \\ d_(DE)=√(26) \end{gathered}

e) EA


\begin{gathered} d=√((x_2-x_1)^2+(y_2-y_1)^2) \\ d_(EA)=√((-2-(-1))^2+(3-(-2))^2) \\ d_(EA)=√(1+25) \\ d_(EA)=√(26) \end{gathered}

Step 3

finally, the perimeter is the sum of the sides length, so


\begin{gathered} perimeter=AB+BC+CD+DE+EA \\ replacing \\ perimeter=√(13)+√(29)+√(26)+√(26)+√(26) \\ perimeter=24.28 \end{gathered}

so, the perimeter is 24.28 units

consider polygon abcde on the coordinate grid what is the best approximation for the-example-1
answered
User Squatting Bear
by
8.2k points

Related questions

asked Apr 8, 2023 83.3k views
Krolth asked Apr 8, 2023
by Krolth
8.3k points
1 answer
1 vote
83.3k views
2 answers
3 votes
124k views
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.