asked 66.2k views
5 votes
Hi, can you help me to evaluate (if possible) thesix trigonometric functions of the real number.Please.

Hi, can you help me to evaluate (if possible) thesix trigonometric functions of the-example-1

1 Answer

4 votes

Okay, here we have this:

Considering the provided angle, we are going to evaluate the trigonometric functions, so we obtain the following:

Sine:


\begin{gathered} \sin (-(2\pi)/(3)) \\ =-\sin ((2\pi)/(3)) \\ =-\cos \mleft((\pi)/(2)-(2\pi)/(3)\mright) \\ =-\cos \mleft(-(\pi)/(6)\mright) \\ =-\cos \mleft((\pi)/(6)\mright) \\ =-(√(3))/(2) \end{gathered}

Cos:


\begin{gathered} cos\mleft(-(2\pi)/(3)\mright) \\ =\cos \mleft((2\pi)/(3)\mright) \\ =\sin \mleft((\pi)/(2)-(2\pi)/(3)\mright) \\ =\sin \mleft(-(\pi)/(6)\mright) \\ =-\sin \mleft((\pi)/(6)\mright) \\ =-(1)/(2) \end{gathered}

Tan:


\begin{gathered} tan\mleft(-(2\pi\:)/(3)\mright) \\ =(\sin (-(2\pi\: )/(3)))/(\cos (-(2\pi\: )/(3))) \\ =\frac{-\frac{\sqrt[]{3}}{2}}{-(1)/(2)} \\ =\sqrt[]{3} \end{gathered}

Csc:


\begin{gathered} \csc \mleft(-(2\pi)/(3)\mright) \\ =(1)/(\sin\left(-(2\pi)/(3)\right)) \\ =-(1)/((√(3))/(2)) \\ =-(2√(3))/(3) \end{gathered}

Sec:


\begin{gathered} \sec \mleft(-(2\pi)/(3)\mright) \\ =(1)/(\cos\left(-(2\pi)/(3)\right)) \\ =(1)/(-(1)/(2)) \\ =-2 \end{gathered}

Cot:


\begin{gathered} \cot \mleft(-(2\pi)/(3)\mright) \\ =(1)/(\tan (-(2\pi)/(3))) \\ =\frac{1}{\sqrt[]{3}} \\ =(√(3))/(3) \end{gathered}

answered
User Izydorr
by
8.4k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.