asked 2.0k views
2 votes
Solve the system of equations below using any method you learned in this unit. Show all work (even if you are using your calculator).

Solve the system of equations below using any method you learned in this unit. Show-example-1

1 Answer

4 votes

Given the system of equations


\begin{gathered} x+4y-z=20-----1 \\ 3x+2y+z=8-----2 \\ 2x-3y+2z=-16-----3 \end{gathered}

We can solve for x, y and z below.

Step-by-step explanation

Step 1: Find the value of z using the substitution method


\begin{gathered} \begin{bmatrix}x+4y-z=20\\ 3x+2y+z=8\\ 2x-3y+2z=-16\end{bmatrix} \\ Isolate\text{ for x in equation 1} \\ x=20-4y+z \\ \mathrm{Substitute\:}x=20-4y+z\text{ in equation 2 and 3} \\ \begin{bmatrix}3\left(20-4y+z\right)+2y+z=8\\ 2\left(20-4y+z\right)-3y+2z=-16\end{bmatrix} \\ sinplify \\ \begin{bmatrix}-10y+4z+60=8 \\ -11y+4z+40=-16\end{bmatrix} \\ Isolate\text{ for y in}-10y+4z+60=8 \\ -10y=8-4z-60 \\ y=(8-4z-60)/(-10) \\ y=(-4z-52)/(-10) \\ y=(2\left(z+13\right))/(5) \\ \mathrm{Substitute\:}y=(2\left(z+13\right))/(5)\text{ in }-11y+4z+40=-16 \\ \begin{bmatrix}-11\cdot (2\left(z+13\right))/(5)+4z+40=-16\end{bmatrix} \\ simplify \\ \begin{bmatrix}(-2z-286)/(5)+40=-16\end{bmatrix} \\ multiply\text{ through by 5} \\ -2z-286+200=-80 \\ isolate\text{ for z} \\ -2z=-80-200+286 \\ -2z=6 \\ z=(6)/(-2) \\ z=-3 \end{gathered}

Step 2: Find y


\begin{gathered} \mathrm{Substitute\:}z=-3\text{ in}\mathrm{\:}y=(2\left(z+13\right))/(5) \\ y=(2(-3+13))/(5) \\ y=(2(10))/(5) \\ y=4 \end{gathered}

Step 3: Find z


\begin{gathered} \mathrm{Substitute\:}z=-3,\:y=4\text{ in }x=20-4y+z \\ x=20-4\cdot \:4-3 \\ x=1 \end{gathered}

Answer: The solutions to the system of equations are


x=1,\:z=-3,\:y=4

answered
User Mejobloggs
by
7.7k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.