asked 58.7k views
5 votes
Can someone help me on this pls? It’s urgent, so ASAP (it’s geometry)

Write formal proofs using LL Theorem.

Can someone help me on this pls? It’s urgent, so ASAP (it’s geometry) Write formal-example-1
asked
User Jepessen
by
8.2k points

1 Answer

7 votes

Question 6

1)
\overline{AB} \cong \overline{BD},
\overline{CD} \perp \overline{BD}, O is the midpoint of
\overline{BD},
\overline{AB} \cong \overline{CD} (given)

2)
\angle ABO, \angle ODC are right angles (perpendicular lines form right angles)

3)
\triangle ABO, \triangle CDO are right triangles (a triangle with a right angle is a right triangle)

4)
\overline{BO} \cong \overline{OD} (a midpoint splits a segment into two congruent parts)

5)
\triangle ABO \cong \triangle CDO (LL)

Question 7

1)
\angle ADC, \angle BDC are right angles),
\overline{AD} \cong \overline{BD}

2)
\overline{CD} \cong \overline{CD} (reflexive property)

3)
\triangle CDA, \triangle CDB are right triangles (a triangle with a right angle is a right triangle)

4)
\triangle ADC \cong \triangle BDC (LL)

5)
\overline{AC} \cong \overline{BC} (CPCTC)

Question 8

1)
\overline{CD} \perp \overline{AB}, point D bisects
\overline{AB} (given)

2)
\angle CDA, \angle CDB are right angles (perpendicular lines form right angles)

3)
\triangle CDA, \triangle CDB are right triangles (a triangle with a right angle is a right triangle)

4)
\overline{AD} \cong \overline{DB} (definition of a bisector)

5)
\overline{CD} \cong \overline{CD} (reflexive property)

6)
\triangle ADC \cong \triangle BDC (LL)

7)
\angle ACD \cong \angle BCD (CPCTC)

answered
User Reyhan
by
8.4k points

Related questions

1 answer
0 votes
135k views
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.