asked 50.7k views
1 vote
2^2 times 2^3
a.2^4
b.2^5
c.2^6
d.4^6

asked
User CKM
by
8.4k points

2 Answers

0 votes

Answer:

The quadratic equations and their solutions are;

9 ± √33 /4 = 2x² - 9x + 6.

4 ± √6 /2 = 2x² - 8x + 5.

9 ± √89 /4 = 2x² - 9x - 1.

4 ± √22 /2 = 2x² - 8x - 3.

Explanation:

Any quadratic equation of the form, ax² + bx + c = 0 can be solved using the formula x = -b ± √b² - 4ac / 2a. Here a, b, and c are the coefficients of the x², x, and the numeric term respectively.

We have to solve all of the five equations to be able to match the equations with their solutions.

2x² - 8x + 5, here a = 2, b = -8, c = 5. x = -b ± √b² - 4ac / 2a = -(-8) ± √(-8)² - 4(2)(5) / 2(2) = 8 ± √64 - 40/4. 24 can also be written as 4 × 6 and √4 = 2. So x = 8 ± 2√6 / 2×2= 4±√6/2.

2x² - 10x + 3, here a = 2, b = -10, c = 3. x =-b ± √b² - 4ac / 2a =-(-10) ± √(-10)² - 4(2)(3) / 2(4) = 10 ± √100 + 24/4. 124 can also be written as 4 × 31 and √4 = 2. So x = 10 ± 2√31 / 2×2 = 5 ± √31 /2.

2x² - 8x - 3, here a = 2, b = -8, c = -3. x = -b ± √b² - 4ac / 2a = -(-8) ± √(-8)² - 4(2)(-3) / 2(2) = 8 ± √64 + 24/4. 88 can also be written as 4 × 22 and √4 = 2. So x = 8 ± 2√22 / 2×2 = 4± √22/2.

2x² - 9x - 1, here a = 2, b = -9, c = -1. x = -b ± √b² - 4ac / 2a = -(-9) ± √(-9)² - 4(2)(-1) / 2(2) = 9 ± √81 + 8/4. x = 9 ± √89 / 4.

2x² - 9x + 6, here a = 2, b = -9, c = 6. x = -b ± √b² - 4ac / 2a = -(-9) ± √(-9)² - 4(2)(6) / 2(2) = 9 ± √81 - 48/4. x = 9 ± √33 / 4 .

answered
User Mironych
by
7.2k points
13 votes

Answer: 2⁵

Explanation: Since these two powers have the same base of 2,

you can multiply them together by simply adding their exponents.

When we do that, we get 2⁵.

A common mistake in this problem would be to multiply

the bases together and give an answer of 4⁵.

The 2's can't be multiplied together however because

they are not coefficients, they are bases.

When applying your exponent rules, your base will never change.

answered
User Jeremiah Gowdy
by
8.2k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.