Answer:
LM = √((5 - 15)² + (17 - 12)²) = √((-10)² + 5²)
= √(100 + 25) = √125 = 5√5
LN = √((x - 5)² + (y - 17)²) = 2√5
NM = √((x - 15)² + (y - 12)²) = 3√5
x² - 10x + 25 + y² - 34y + 289 = 20
x² - 10x + y² - 34y = -294
x² - 30x + 225 + y² - 24y + 144 = 45
x² - 30x + y² - 24y = -324
x² - 10x + y² - 34y = -294
x² - 30x + y² - 24y = -324
-----------------------------------
20x - 10y = 30
2x - y = 3
y = 2x - 3
x² - 30x + (2x - 3)² - 24(2x - 3) = -324
x² - 30x + 4x² - 12x + 9 - 48x + 72 = -324
5x² - 90x + 405 = 0
x² - 18x + 81 = 0
(x - 9)² = 0
x = 9, y = 2(9) - 3 = 15
The coordinates of N are (9, 15).