Answer:
You haven't given me temperature so i'll use 300 Kelvin
Step-by-step explanation:
For Container A:
P_A = 2.10 atm
V_A = 787 mL = 0.787 L
R = 0.0821 L.atm/mol.K
T_A = 300 K
Using the ideal gas law:
n_A = (P_A * V_A) / (R * T_A)
n_A = (2.10 atm * 0.787 L) / (0.0821 L.atm/mol.K * 300 K)
n_A ≈ 0.0657 moles
Now, for Container B:
P_B = 4.80 atm
V_B = 154 mL = 0.154 L
R = 0.0821 L.atm/mol.K
T_B = 300 K
Using the ideal gas law:
n_B = (P_B * V_B) / (R * T_B)
n_B = (4.80 atm * 0.154 L) / (0.0821 L.atm/mol.K * 300 K)
n_B ≈ 0.0298 moles
Now that we have the number of moles for each gas in each container, we can find their partial pressures.
Partial pressure of gas A (P_A):
P_A = (n_A * R * T_A) / V_A
P_A = (0.0657 moles * 0.0821 L.atm/mol.K * 300 K) / 0.787 L
P_A ≈ 2.10 atm
Partial pressure of gas B (P_B):
P_B = (n_B * R * T_B) / V_B
P_B = (0.0298 moles * 0.0821 L.atm/mol.K * 300 K) / 0.154 L
P_B ≈ 4.80 atm
Now you have the partial pressures of each gas in the mixture:
Partial pressure of gas A (P_A) ≈ 2.10 atm
Partial pressure of gas B (P_B) ≈ 4.80 atm