asked 214k views
4 votes
Help me plezzzzzzz im bad at math

Help me plezzzzzzz im bad at math-example-1
asked
User TapanHP
by
8.1k points

1 Answer

3 votes

Answer:

64

Explanation:

Given expression:


2^2\cdot2^4\cdot(4^1)/(4^(-1))\cdot2^(-4)\cdot 10^0\cdot 1

To solve, begin by rearranging the given expression to collect terms with the same bases:


1\cdot 2^2\cdot2^4\cdot 2^(-4)\cdot(4^1)/(4^(-1))\cdot10^0


\textsf{Apply the exponent rule:} \quad a^0=1


1\cdot 2^2\cdot2^4\cdot 2^(-4)\cdot(4^1)/(4^(-1))\cdot1

Apply the rule a · 1 = a:


2^2\cdot2^4\cdot 2^(-4)\cdot(4^1)/(4^(-1))


\textsf{Apply the exponent rule:} \quad (a^b)/(a^c)=a^(b-c)


2^2\cdot2^4\cdot 2^(-4)\cdot 4^(1-(-1))


2^2\cdot2^4\cdot 2^(-4)\cdot 4^(2)

Rewrite 4 as 2²:


2^2\cdot2^4\cdot 2^(-4)\cdot (2^2)^(2)


\textsf{Apply the exponent rule:} \quad (a^b)^c=a^(bc)


2^2\cdot2^4\cdot 2^(-4)\cdot 2^4


\textsf{Apply the exponent rule:} \quad a^b \cdot a^c=a^(b+c)


2^(2+4-4+4)


2^(6)

Finally, compute 2⁶:


2^(6)=2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2=64

Therefore, the given expression is equal to:


\Large\boxed{\boxed{64}}

answered
User Daughter
by
8.6k points

Related questions

1 answer
2 votes
119k views
asked Jun 18, 2021 18.2k views
Shipra Swati asked Jun 18, 2021
by Shipra Swati
8.6k points
2 answers
4 votes
18.2k views
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.