Answer:
x = 5
y = -11
z = 3
Explanation:
To solve the system of equations using Gaussian elimination, first write the system in augmented matrix form and then perform row operations to simplify it.
The system of equations is:

Create an augmented matrix [A|B] where A represents the coefficients of the variables (x, y, z), and B represents the constants on the right-hand side of each equation:
![[A|B] = \left[\begin{array}rrr2 & -1 & 4 & 33 \\1 & 2 & -3 & -26 \\-5 & -3 & 5 & 23 \\\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/7hp1z8zgpt0w5mewwnxeaf719utxurvy2u.png)
Now use row operations to simplify the augmented matrix into its reduced echelon form where:
- The leading entry (the leftmost non-zero entry) in any non-zero row is 1.
- The leading entry of each non-zero row after the first row must be to the right of the leading entry of the previous row.
- All entries in the column below a leading 1 are zero.
Switch the first row (R₁) and the second row (R₂):
![\left[\begin{array}r2 & -1 & 4 & 33 \\1 & 2 & -3 & -26 \\-5 & -3 & 5 & 23 \\\end{array}\right]R_1\leftrightarrow R_2 \left[\begin{array}rrr1 & 2 & -3 & -26 \\2 & -1 & 4 & 33 \\-5 & -3 & 5 & 23 \\\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/vqemvepoatcd28b3m5jycudlsdffb00w4j.png)
Subtract 2 times the first row (R₁) from the second row (R₂):
![\left[\begin{array}rrr1 & 2 & -3 & -26 \\2 & -1 & 4 & 33 \\-5 & -3 & 5 & 23 \\\end{array}\right]R_2-2R_1\rightarrow R_2\left[\begin{array}r1 & 2 & -3 & -26 \\0 & -5 & 10 & 85 \\-5 & -3 & 5 & 23 \\\end{array}\right]]()
Add 5 times the first row (R₁) to the third row (R₃):
![\left[\begin{array}rrr1 & 2 & -3 & -26 \\0 & -5 & 10 & 85 \\-5 & -3 & 5 & 23 \\\end{array}\right]R_3+5R_1\rightarrow R_3\left[\begin{array}rrr1 & 2 & -3 & -26 \\0 & -5 & 10 & 85 \\0 & 7 & -10 & -107 \\\end{array}\right]]()
Multiply the second row (R₂) by -1/5:
![\left[\begin{array}r1 & 2 & -3 & -26 \\0 & -5 & 10 & 85 \\0 & 7 & -10 & -107 \\\end{array}\right]-(1)/(5)R_2\rightarrow R_2\left[\begin{array}rrr1 & 2 & -3 & -26 \\0 &1 & -2 & -17 \\0 & 7 & -10 & -107 \\\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/ts9mq765pn06nzh9n71bemv5kgrgr6qhw5.png)
Subtract 7 times the second row (R₂) from the third row (R₃):
![\left[\begin{array}r1 & 2 & -3 & -26 \\0 &1 & -2 & -17 \\0 & 7 & -10 & -107 \\\end{array}\right]R_3-7R_2\rightarrow R_3\left[\begin{array}r1 & 2 & -3 & -26 \\0 &1 & -2 & -17 \\0 & 0 & 4 & 12 \\\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/nuhc7xij7ur5ye7szxlxlz811zq8ufjqpc.png)
Finally, multiply the third row (R₃) by 1/4:
/(4)R_3\rightarrow R_3\left[\begin{array}rrr1 & 2 & -3 & -26 \\0 &1 & -2 & -17 \\0 & 0 & 1 & 3 \\\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/q3j3x2zcptqir5zeno1qqpnp1heogj8dql.png)
Now this is in reduced echelon form, we can deduce the value z from R₃:

Substitute the value of z into R₂ and find the value of y:

Finally, substitute the values of y and z into R₁ to find the value of x:

So, the solution to the system of equations is:

Additional Notes
Another common definition of reduced echelon form requires that all entries in the column above and below a leading 1 are zero.
If this is the definition you need to use, continue simplifying with the following operations:
Subtract 2 times the second row (R₂) from the first row (R₁):
![\left[\begin{array}r1 & 2 & -3 & -26 \\0 &1 & -2 & -17 \\0 & 0 & 1 & 3 \\\end{array}\right]R_1-2R_2\rightarrow R_1\left[\begin{array}rrr1 & 0 & 1 & 8 \\0 &1 & -2 & -17 \\0 & 0 & 1 & 3 \\\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/kmfawcptcig4bfzh7wmhmvp6s75dtkdwlg.png)
Add 2 times the third row (R₃) to the second row (R₂):
![\left[\begin{array}r1 & 0 & 1 & 8 \\0 &1 & -2 & -17 \\0 & 0 & 1 & 3 \\\end{array}\right]R_2+2R_3\rightarrow R_2\left[\begin{array}r1 & 0 & 1 & 8 \\0 &1 & 0 & -11 \\0 & 0 & 1 & 3 \\\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/p5nw6xpcuk9qotz3o6bdsst92rpn14s8s6.png)
Subtract the third row (R₃) from the first row (R₁):
![\left[\begin{array}rrr1 & 0 & 1 & 8 \\0 &1 & 0 & -11 \\0 & 0 & 1 & 3 \\\end{array}\right]R_1-R_3\rightarrow R_1\left[\begin{array}r1 & 0 & 0& 5 \\0 &1 & 0 & -11 \\0 & 0 & 1 & 3 \\\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/1wqj1xj2vdfsigsb37g73vwkjsw4by6a7c.png)
We can now deduce the value of x from R₁, the value of y from R₂ and the value of z from R₃:


