Answer:
![\left[\begin{array}{rr}-8&1\\0&4\\6&3\\-3&-4\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/ps3r2bc5jomkg11ry4tnnd2q78bu856932.png)
Explanation:
Given matrix:
![A=\left[\begin{array}{rr}-1&2\\0&4\\6&3\\-3&-4\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/l2cosfjaouxw9eg9ucsgjk86ifw2q2rs60.png)
The operation 2R₁ - R₃ means that we multiply row 1 (R₁) by 2 and then subtract row 3 (R₃) from the result. After performing this operation, the original row 1 is replaced with the new result, which is the outcome of this operation. This operation modifies row 1 and leaves the other rows unchanged.
![\left[\begin{array}{rr}-1&2\\0&4\\6&3\\-3&-4\end{array}\right]2R_1-R_3 \rightarrow R_1\left[\begin{array}{rr}(2(-1)-6)&(2(2)-3)\\0&4\\6&3\\-3&-4\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/ve2u0i94a8zybdcg9pwxou3kq74toie6lb.png)
![\left[\begin{array}{rr}-1&2\\0&4\\6&3\\-3&-4\end{array}\right]2R_1-R_3 \rightarrow R_1\left[\begin{array}{rr}-8&1\\0&4\\6&3\\-3&-4\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/f7xjqjr6ttzsczc6na83jf7rlcex7jv762.png)
Therefore, the matrix that results from the transformation is:
![\left[\begin{array}{rr}-8&1\\0&4\\6&3\\-3&-4\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/ps3r2bc5jomkg11ry4tnnd2q78bu856932.png)