Answer:
(4, 9)
Explanation:
To find the ordered pair (x, y) that satisfies the given system of equations, we can use the method of substitution or elimination. Let's use the elimination method:
Given equations:


First, let's solve equation 1 for x:
![\[x = y - 5\]](https://img.qammunity.org/2024/formulas/mathematics/college/q5jr9zd4igdb23bmm1tjpz3ers3n98m39b.png)
Now, substitute this expression for x into equation 2:
![\[(y - 5) + 2y = 22\]](https://img.qammunity.org/2024/formulas/mathematics/college/btedg5wvebi02d8kaoj3siuj04fj2lg73o.png)
Combine like terms:
![\[3y - 5 = 22\]](https://img.qammunity.org/2024/formulas/mathematics/college/xcumrmqujbad1uauu55zngba5eoxkw5ohl.png)
Add 5 to both sides:
![\[3y = 27\]](https://img.qammunity.org/2024/formulas/mathematics/college/1o6044uenwasdxtk495ovoedcghnnp0t3k.png)
Now, divide by 3:
![\[y = 9\]](https://img.qammunity.org/2024/formulas/mathematics/college/f2f0a3o29hoaap7xjzpodgre3ue66gcuas.png)
Now that we have found the value of y, we can find the value of x using the first equation:
![\[x = y - 5 = 9 - 5 = 4\]](https://img.qammunity.org/2024/formulas/mathematics/college/xiq7ukr47umqa2iuws8zooxzxxjyrcr2z5.png)
So, the ordered pair (x, y) that satisfies the system of equations is (4, 9). Therefore, the answer is:
(4, 9)