Answer:
![5ab^2\sqrt[3]{4a}](https://img.qammunity.org/2024/formulas/mathematics/college/xe7wsgk4yg4es0p9ztok7k7uoppn8epr06.png)
Explanation:
We can simplify cube-rooted numbers as follows:
![\sqrt[3]{a^3} = a](https://img.qammunity.org/2024/formulas/mathematics/college/hzvy2evaj2ilkfheg4vo32s06b8pvhveer.png)
Because that is true, we can also say that:
![\sqrt[3]{a^4} = \sqrt[3]{a^3 \cdot a} = a\sqrt[3]{a}](https://img.qammunity.org/2024/formulas/mathematics/college/ycekqhtemmtbgpv0v77jfehr4evu7jqpbx.png)
Therefore, we can simplify the given expression with the following steps:
![\sqrt[3]{500a^4b^6}](https://img.qammunity.org/2024/formulas/mathematics/college/8y506x61l34qyefvnfpsuxre6hjp6eslos.png)
↓ expanding the variables to put together groups of 3
![\sqrt[3]{500 \cdot a^3 \cdot a \cdot b^3 \cdot b^3}](https://img.qammunity.org/2024/formulas/mathematics/college/283oed6efagwl58k4aohcm9i0t3mzqj924.png)
↓ simplifying the cube roots of the variables
![ab^2\sqrt[3]{500a}](https://img.qammunity.org/2024/formulas/mathematics/college/fesgtaix2c3v4tk4sp51remku988401zhe.png)
↓ rewriting 500 with its prime factorization
![ab^2\sqrt[3]{5^3 \cdot 2^2 \cdot a}](https://img.qammunity.org/2024/formulas/mathematics/college/zy27by7f8g9vio0knkf1sflagearb8orxl.png)
↓ simplifying the cube root of

![\boxed{5ab^2\sqrt[3]{4a}}](https://img.qammunity.org/2024/formulas/mathematics/college/va52pdhot0fzy2dva2mfla3cwcckb95wd3.png)