Explanation:
Use binomial probability:
P = nCr pʳ qⁿ⁻ʳ
where n is the number of trials,
r is the number of successes,
p is the probability of success,
and q is the probability of failure (1−p).
In this case, p = 0.24, q = 1−0.24 = 0.76, and n = 10.
a) P(r=2)
P = ₁₀C₂ 0.24² 0.76¹⁰⁻²
P = 0.288
b) P(r>2) = 1 − P(r=0) − P(r=1) − P(r=2)
P = 1 − (₁₀C₀ 0.24⁰ 0.76¹⁰⁻⁰) − (₁₀C₁ 0.24¹ 0.76¹⁰⁻¹) − (₁₀C₂ 0.24² 0.76¹⁰⁻²)
P = 1 − 0.064 − 0.203 − 0.288
P = 0.444
c) P(2≤r≤5) = P(r=2) + P(r=3) + P(r=4) + P(r=5)
P = (₁₀C₂ 0.24² 0.76¹⁰⁻²) + (₁₀C₃ 0.24³ 0.76¹⁰⁻³) + (₁₀C₄ 0.24⁴ 0.76¹⁰⁻⁴) + (₁₀C₅ 0.24⁵ 0.76¹⁰⁻⁵)
P = 0.288 + 0.243 + 0.134 + 0.051
P = 0.717