asked 124k views
1 vote
what is the domain of function p? p(x) = √x-1 +2 a. (-[infinity], 1] b. [1,[infinity]) c. (-[infinity],2] d. [2,[infinity])

asked
User Saadlulu
by
8.8k points

1 Answer

2 votes

Final answer:

The domain of function p(x) = √x-1 +2 is the set of all x-values that are greater than or equal to 1, represented as [1, ∞). Therefore, option b. [1,[infinity]) is the correct choice.

Step-by-step explanation:

The domain of a function is the set of all possible input values (commonly called 'x-values') that will result in a valid output from a particular function.

When looking at the function p(x) = √x-1 +2, we need to consider when this function would be defined. Since you cannot take the square root of a negative number (in the real number system), the inside of the square root (the 'radicand') needs to be greater than or equal to zero. So, for the function to be valid, x-1 must be greater than or equal to 0.

By solving that inequality, we get x >= 1. This means that for all x-values greater than or equal to 1, we will get real-number outputs from the function. Therefore, the domain of this function p is [1, ∞), or option b from your choices.

Learn more about Domain of function

answered
User Artemave
by
8.1k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.