asked 201k views
0 votes
Evaluate the following integrals, please show steps.


\int\limits (e^x)/(e^2^x+25) dx.

1 Answer

4 votes

Answer:


(1)/(5)\arctan \left((e^x)/(5)\right)+C

Explanation:

Given integral:


\displaystyle \int (e^x)/(e^(2x)+25)\; \text{d}x

To integrate the given integral, we can use the method of substitution.


\textsf{Let}\;\;u=e^x

Differentiate u with respect to x:


\frac{\text{d}u}{\text{d}x}=e^x

Rearrange to isolate dx:


\text{d}x=(1)/(e^x)\;\text{d}u}

Rewrite the original integral in terms of u and du:


\begin{aligned}\displaystyle \int (e^x)/(e^(2x)+25)\; \text{d}x&=\int (u)/(u^2+25)\cdot (1)/(e^x)\;\text{d}u}\\\\&=\int (u)/(u^2+25)\cdot (1)/(u)\;\text{d}u}\\\\&=\int (1)/(u^2+25)\;\text{d}u}\end{aligned}

Rewrite 25 as 5²


=\displaystyle \int (1)/(u^2+5^2)\;\text{d}u}

We can now use the following integration rule to evaluate the integral:


\boxed{\displaystyle \int(1)/(a^2+x^2)\; \text{d}x=(1)/(a) \arctan \left((x)/(a)\right)+\text{C}}

In this case, a = 5 and x = u. Therefore:


\displaystyle \int (1)/(u^2+5^2)\;\text{d}u}=(1)/(5)\arctan \left((u)/(5)\right)+C

Substitute back in
u = e^x:


=(1)/(5)\arctan \left((e^x)/(5)\right)+C

Therefore, the evaluation of the given integral is:


\large\boxed{\boxed{(1)/(5)\arctan \left((e^x)/(5)\right)+C}}

answered
User Scribu
by
7.8k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.