asked 171k views
3 votes
Evaluate the derivatives of the function. Do NOT simplify your answer. Please show me how to do this step by step.


f(x)=(1)/(2) arctan(e^4^x)

1 Answer

5 votes

Answer:


f'(x)=(2e^(4x))/(1+e^(8x))

Explanation:

Given function:


f(x)=(1)/(2)\arctan \left(e^(4x)\right)

To differentiate the given function, we can use the chain rule.


\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If $y=f(u)$ and $u=g(x)$ then:\\\\$\frac{\text{d}y}{\text{d}x}=\frac{\text{d}y}{\text{d}u}*\frac{\text{d}u}{\text{d}x}$\\\end{minipage}}


\textsf{Let}\;\;y=(1)/(2)\arctan(u)\;\;\textsf{where}\;\;u=e^(4x)

Differentiate the two parts separately using the following differentiation rules:


\boxed{\begin{aligned}&\underline{\sf Differentiation\;Rules}\\\\&\frac{\text{d}}{\text{d}x}(\arctan x)=(1)/(1+x^2)\\\\&\frac{\text{d}}{\text{d}x}\left(e^(f(x))\right)=f'(x)\cdot e^(f(x))\\\\\end{aligned}}

Therefore:


\frac{\text{d}y}{\text{d}u}=(1)/(2)\cdot (1)/(1+u^2)=(1)/(2(1+u^2))


\frac{\text{d}u}{\text{d}x}=4 \cdot e^(4x)=4e^(4x)

Put everything into the chain rule formula:


\frac{\text{d}y}{\text{d}x}=\frac{\text{d}y}{\text{d}u}* \frac{\text{d}u}{\text{d}x}


\frac{\text{d}y}{\text{d}x}=(1)/(2(1+u^2))*4e^(4x)


\frac{\text{d}y}{\text{d}x}=(4e^(4x))/(2(1+u^2))


\frac{\text{d}y}{\text{d}x}=(2e^(4x))/(1+u^2)

Substitute back
u=e^(4x):


\frac{\text{d}y}{\text{d}x}=(2e^(4x))/(1+\left(e^(4x)\right)^2)


\frac{\text{d}y}{\text{d}x}=(2e^(4x))/(1+e^(8x))

Therefore, the derivative of the given function is:


\large\boxed{\boxed{f'(x)=(2e^(4x))/(1+e^(8x))}}

answered
User Saraband
by
8.7k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.