asked 108k views
4 votes
Solve the following: 3x-(2x-4)<-4x+19

asked
User Chony
by
8.1k points

1 Answer

0 votes

Answer:

x < 3

Explanation:

Let's solve the inequality step by step:

3x - (2x - 4) < -4x + 19

First, distribute the negative sign inside the parentheses:

3x - 2x + 4 < -4x + 19

Now, combine like terms on both sides of the inequality:

(3x - 2x) + 4 < -4x + 19

x + 4 < -4x + 19

Next, let's isolate the variable x on one side of the inequality. To do this, we'll add 4x to both sides:

x + 4x + 4 < 19

5x + 4 < 19

Now, subtract 4 from both sides:

5x + 4 - 4 < 19 - 4

5x < 15

Finally, divide both sides by 5 to solve for x:

(5x)/5 < 15/5

x < 3

So, the solution to the inequality is:

x < 3

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.