Answer:
a^8 - 12a^6 + 54a^4 - 108a^2 + 81.
Explanation:
General form of the binomial theorem:
( a + b)^n = a^n + nC1 a^(n-1)b + nC2 a^(n - 2)b^2 +.......... + b^n
So:
(a^2 - 3)^4 = (a^2)^4 + 4C1 (a^2)^3*(-3) + 4C2 (a^2)^2 (-3)^2 + 4C3 (a^2) (-3)^3
+ (-3)^4
= a^8 + 4 * a^6 * -3 + 6 * a^4 * 9 + 4 * a^2 * -27 + 81
= a^8 - 12a^6 + 54a^4 - 108a^2 + 81.