asked 82.9k views
4 votes
Find the derivative of the function. Simplify and express the answer using positive exponents only.

y = (x² - 8)(x + 1)

1 Answer

3 votes

Answer:


\frac{\text{d}y}{\text{d}x}&=3x^2+2x-8

Explanation:

To find the derivative of the function y = (x² - 8)(x + 1), we can use the product rule.


\boxed{\begin{array}{l}\underline{\sf Product\;Rule\;for\;Differentiation}\\\\\textsf{If}\;y=uv\;\textsf{then:}\\\\\frac{\text{d}y}{\text{d}x}=u\frac{\text{d}v}{\text{d}x}+v\frac{\text{d}u}{\text{d}x}\\\\\end{array}}


\textsf{Let}\;u = x^2 - 8


\textsf{Let}\;v = x+1

Differentiate u and v with respect to x:


\frac{\text{d}u}{\text{d}x}=2 \cdot x^(2-1)-0=2x


\frac{\text{d}v}{\text{d}x}=x^(1-1)+0=x^0=1

Substitute the expressions into the product rule formula:


\frac{\text{d}y}{\text{d}x}&=u\frac{\text{d}v}{\text{d}x}+v\frac{\text{d}u}{\text{d}x}


\frac{\text{d}y}{\text{d}x}&=(x^2-8)\cdot 1+(x+1)\cdot 2x


\frac{\text{d}y}{\text{d}x}&=(x^2-8)+2x(x+1)

Simplify:


\frac{\text{d}y}{\text{d}x}&=x^2-8+2x^2+2x


\frac{\text{d}y}{\text{d}x}&=3x^2+2x-8

Therefore, the derivative of the given function is:


\large\boxed{\frac{\text{d}y}{\text{d}x}&=3x^2+2x-8}


\hrulefill

Differentiation Rules


\boxed{\begin{minipage}{4.5 cm}\underline{Differentiating $x^n$}\\\\If $y=x^n$, then $\frac{\text{d}y}{\text{d}x}=nx^(n-1)$\\\end{minipage}}


\boxed{\begin{minipage}{4 cm}\underline{Differentiating $ax$}\\\\If $y=ax$, then $\frac{\text{d}y}{\text{d}x}=a$\\\end{minipage}}


\boxed{\begin{minipage}{4cm}\underline{Differentiating a constant}\\\\If $y=a$, then $\frac{\text{d}y}{\text{d}x}=0$\\\end{minipage}}

answered
User Nirajan Poudel
by
8.3k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.