asked 57.6k views
0 votes
Need help full steps to solve…

Need help full steps to solve…-example-1

1 Answer

5 votes

Answer:


(2^(p+1)\cdot 3^(2p-q)\cdot 5^(p+q)\cdot 6^q)/(6^p \cdot 10^(q+2)\cdot 15^p)=\boxed{(1)/(50)}

Explanation:

Given expression:


(2^(p+1)\cdot 3^(2p-q)\cdot 5^(p+q)\cdot 6^q)/(6^p \cdot 10^(q+2)\cdot 15^p)

To simplify the given expression, use the laws of exponents to combine like terms and simplify.


\boxed{\begin{array}{rl}\underline{\sf Laws\;of\;Exponents}\\\\\sf Product:&a^m * a^n=a^(m+n)\\\\\sf Quotient:&a^m / a^n=a^(m-n)\\\\\sf Power\;of\;a\;Power:&(a^m)^n=a^(mn)\\\\\sf Power\;of\;a\;Product:&(ab)^m=a^mb^m\\\\\sf Negative\;Exponent:&a^(-m)=(1)/(a^m)\\\\\sf Zero\;Exponent:&a^0=1\\\\\end{array}}

Use the product rule so that each base has one exponent:


(2^(p)\cdot2^(1)\cdot 3^(2p)\cdot3^(-q)\cdot 5^(p)\cdot5^(q)\cdot 6^q)/(6^p \cdot 10^(q)\cdot10^(2)\cdot 15^p)

Apply the power of a power rule to simplify
3^(2p):


(2^(p)\cdot2^(1)\cdot (3^(2))^(p)\cdot3^(-q)\cdot 5^(p)\cdot5^(q)\cdot 6^q)/(6^p \cdot 10^(q)\cdot10^(2)\cdot 15^p)


(2^(p)\cdot2^(1)\cdot9^(p)\cdot3^(-q)\cdot 5^(p)\cdot5^(q)\cdot 6^q)/(6^p \cdot 10^(q)\cdot10^(2)\cdot 15^p)

Rearrange to collect terms with the same exponent:


(2^(1)\cdot2^(p)\cdot 5^(p)\cdot 9^(p)\cdot5^(q)\cdot 6^q\cdot3^(-q))/(10^(2)\cdot6^p\cdot 15^p \cdot 10^(q))

Apply the power of a product rule to simplify the terms with the same exponents:


(2^(1)\cdot(2\cdot 5\cdot 9)^(p)\cdot(5\cdot 6)^q\cdot3^(-q))/(10^(2)\cdot(6\cdot 15)^p \cdot 10^(q))


(2^(1)\cdot90^(p)\cdot30^q\cdot3^(-q))/(10^(2)\cdot90^p \cdot 10^(q))

Cancel the common factor
90^p:


(2^(1)\cdot30^q\cdot3^(-q))/(10^(2) \cdot 10^(q))

Apply the negative exponent rule to move
10^q to the numerator:


(2^(1)\cdot30^q\cdot3^(-q)\cdot 10^(-q))/(10^(2))

Use the power of a product rule to rewrite
30^q:


(2^(1)\cdot(3 \cdot 10)^q\cdot3^(-q)\cdot 10^(-q))/(10^(2))


(2^(1)\cdot3^q \cdot 10^q\cdot3^(-q)\cdot 10^(-q))/(10^(2))

Rearrange to collect terms with the same base:


(2^(1)\cdot3^q\cdot3^(-q) \cdot 10^q\cdot 10^(-q))/(10^(2))

Apply the product rule to simplify the terms in the numerator:


(2^(1)\cdot3^(q-q) \cdot 10^(q-q))/(10^(2))


(2^(1)\cdot3^(0) \cdot 10^(0))/(10^(2))

Apply the zero exponent rule, a⁰ = 1:


(2^(1)\cdot1 \cdot 1)/(10^(2))


(2^(1))/(10^(2))

Simplify the powers of 2 and 10:


(2)/(100)

Divide the numerator and denominator by the highest common factor:


(2/ 2)/(100/ 2)=(1)/(50)

As the expression cannot be simplified further, the simplified expression is:


\Large\boxed{(1)/(50)}

answered
User Rick Runyon
by
8.2k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.