Answer:
There are multiple integer solutions possible. I found two solutions.
X = 1132 & Y = 40. X = 76 & Y = -288.
Explanation:
41 x - 132 y = 41132
41 (x - 3 y - 1003) - 9 y = 9
41 (x - 3 y - 1003) = 9 (y + 1)
As 41 & 9 are relatively prime,
y + 1 = 41 => y = 40.
x - 3 y - 1003 = 9 => x = 1132.
===========
41 x = 132 (y + 311) + 80
41 [x - 3 (y+311)] - 9 (y+311) = 80
5 [x - 3 (y+311)] - 9 [ 4{x - 3(y+311)} - (y+ 311) ] = 80
5 [x - 3 (y+311)] - 9 [ 4x - 13(y+311) ] = 80
One possible solution :
4x - 13(y+311) = 5, => 4 x - 13 y = 4048
and x - 3(y + 311) = 7, => x - 3 y = 940
Solving these equations we get x = 76 & y = -288.