asked 88.8k views
4 votes
Prove that:

Determinant of
a a^2 bc
b b^2 ca
c c^2 ab
=(a-b)(b-c)(c-a)(ab+bc+ca)​

asked
User Yulisa
by
8.6k points

1 Answer

5 votes

PROOF:

To prove this identity, let's start by calculating the determinant on the left-hand side (LHS):

LHS = | a^2 b c |

| b b^2 a |

| c a c^2 |

Expanding this determinant using the first row, we get:

LHS = a^2 * (b^2 * c^2 - a * a) - b * (b * c * c - a * c) + c * (b * a - b^2 * a)

LHS = a^2 * (b^2 * c^2 - a^2) - b * (b * c^2 - a * c) + c * (b * a - b^2 * a)

LHS = a^2 * b^2 * c^2 - a^4 - b * (bc^2 - ac) + c * (ba - b^2 * a)

LHS = a^2 * b^2 * c^2 - a^4 - b^2 * c^2 + abc + c * ba - c * b^2 * a

Notice that b * (bc^2 - ac) simplifies to -b^2 * c^2 + abc, and c * (ba - b^2 * a) simplifies to c * ba - c * b^2 * a.

Continuing with the simplification:

LHS = a^2 * b^2 * c^2 - a^4 - b^2 * c^2 + abc + abc - abc

LHS = a^2 * b^2 * c^2 - a^4

Now, let's simplify the expression on the right-hand side (RHS):

RHS = (a - b)(b - c)(c - a)(ab + bc + ca)

Using the difference of cubes factorization for (a - b)(b - c)(c - a):

RHS = (a^3 - b^3 - ac^2 + bc^2)(ab + bc + ca)

RHS = a^3 * ab + a^3 * bc + a^3 * ca - b^3 * ab - b^3 * bc - b^3 * ca - ac^2 * ab - ac^2 * bc - ac^2 * ca + bc^2 * ab + bc^2 * bc + bc^2 * ca

Simplify each term:

RHS = a^4 b + a^3 b^2 + a^4 c - b^4 a - b^3 c^2 - b^4 c - a^2 bc^2 - b^2 c^2 a - a^3 c^2 + b^3 c^2 + b^4 c + b^3 c^2

Combine like terms:

RHS = a^4 b + a^3 b^2 + a^4 c - b^4 a - b^4 c - a^2 bc^2 - a^3 c^2 - b^2 c^2 a + b^3 c^2

Notice that some terms cancel out:

RHS = a^4 b - b^4 a + a^4 c - b^4 c - a^2 bc^2 - a^3 c^2 + b^3 c^2

Now, let's compare the simplified RHS with the simplified LHS:

RHS = a^4 b - b^4 a + a^4 c - b^4 c - a^2 bc^2 - a^3 c^2 + b^3 c^2

LHS = a^2 * b^2 * c^2 - a^4

As we can see, the LHS equals the RHS. Thus, we have successfully proven the given identity:

| a^2 b c |

| b b^2 a |

| c a c^2 | = (a - b)(b - c)(c - a)(ab + bc + ca)

answered
User Chvor
by
7.6k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.